| News

Seeing around corners: MIT Develop the Ultimate Periscope

A new imaging system could use opaque walls, doors or floors as 'mirrors' to gather information about scenes outside its line of sight

The principle behind the system is essentially that of the periscope. But instead of using angled mirrors to redirect light, the system uses ordinary walls, doors or floors — surfaces that aren't generally thought of as reflective.

The system exploits a device called a femtosecond laser, which emits bursts of light so short that their duration is measured in quadrillionths of a second. To peer into a room that's outside its line of sight, the system might fire femtosecond bursts of laser light at the wall opposite the doorway. The light would reflect off the wall and into the room, then bounce around and re-emerge, ultimately striking a detector that can take measurements every few picoseconds, or trillionths of a second.

Because the light bursts are so short, the system can gauge how far they've traveled by measuring the time it takes them to reach the detector.

The system performs this procedure several times, bouncing light off several different spots on the wall, so that it enters the room at several different angles. The detector, too, measures the returning light at different angles. By comparing the times at which returning light strikes different parts of the detector, the system can piece together a picture of the room's geometry.

Ramesh Raskar, who led the research, envisions that a future version of the system could be used by emergency responders — firefighters looking for people in burning buildings or police determining whether rooms are safe to enter — or by vehicle navigation systems, which could bounce light off the ground to look around blind corners. It could also be used with endoscopic medical devices, to produce images of previously obscure regions of the human body.

Source: Massachusetts Institute of Technology

Sponsor

Comments are closed.

Our weekly newsletter

Sign up to get updates on articles, interviews and events.